APS PSYCHOLOGICAL SCIENCES: *The story*
June 2015

<table>
<thead>
<tr>
<th>UNIT</th>
<th>Understanding</th>
<th>Science as a Human Endeavour</th>
<th>Science Inquiry Skills</th>
</tr>
</thead>
</table>
| 1 The biopsychosocial model across the lifespan | • Defining psychological science
• Introducing the biopsychosocial model
• Research methods in psychological science | • Science is a global enterprise that relies on clear communication, international conventions, peer review, and reproducibility
• Development of complex models and/or theories often requires a wide range of evidence from multiple individuals and across disciplines
• Advances in science understanding in one field can influence other areas of science, engineering and technology
• The use of scientific knowledge is influenced by social, economic, cultural and ethical considerations | A set of generic science inquiry skills (from ACARA weblink), listed below, apply to the study of APS Psychological Sciences. These have been differentiated in the APS curriculum document at two levels: Units 1&2, and Units 3&4. The generic science inquiry skills are:
• Identifying, researching and constructing questions for investigation; proposing hypotheses; and predicting possible outcomes
• Designing investigations, including the procedure/s to be followed, the materials required and the type and amount of primary and/or secondary data to be collected, conducting risk assessments, and considering ethical research
• Conducting investigations, including using equipment and techniques safely, competently and methodically for the collection of valid and reliable data
• Representing data in meaningful and useful ways; organising and analysing data to identify trends, patterns and relationships; recognising error, uncertainty and limitations in data; and selecting, synthesising and using evidence to construct and justify conclusions
• Interpreting scientific and media texts and evaluating processes, claims and conclusions by considering the quality of available evidence, and using reasoning to construct scientific arguments
• Selecting, constructing and using appropriate representations to communicate understanding, solve problems and make predictions
• Communicating to specific audiences and for specific purposes using appropriate language, nomenclature, genres and modes |
| 2 Social processes and individual differences | • Social psychology
• Personality
• Intelligence
• Minority and disempowered groups | • The use of scientific knowledge may have beneficial and/or harmful and/or unintended consequences
• Scientific knowledge can enable scientists to offer valid explanations and make reliable predictions
• Scientific knowledge can be used to develop and evaluate projected economic, social, and environmental impacts and to design action for sustainability | |
| 3 Sensing, feeling, thinking and behaving | • Sensation and perception
• Emotion
• Cognition | • ICT and other technologies have dramatically increased the size, accuracy and geographic and temporal scope of data sets with which scientists work
• Models and theories are contested and refined or replaced when new evidence challenges them, or when a new model or theory has greater explanatory power
• The acceptance of scientific knowledge can be influenced by the social, economic and cultural context in which it is considered
• People can use scientific knowledge to inform the monitoring, assessment and evaluation of risk
• Science can be limited in its ability to provide definitive answers to public debate; there may be insufficient reliable data available, or interpretation of the data may be open to question
• International collaboration is often required when investing in large-scale science projects or addressing international issues | |
| 4 Neuroscience, mental health and wellbeing | • Behavioural neuroscience
• Sleep and altered states of consciousness
• Mental health and well-being | | |